Climatological aspects of size-resolved column aerosol optical properties observed over a rural site in the southern peninsular India

B.L. Madhavan, M. Venkat Ratnam, A. Sai Krishnaveni, V. Ravi Kiran

National Atmospheric Research Laboratory (NARL), Gadanki, INDIA

10th November 2021

6th International SKYNET Workshop 2021, Japan (9–11 Nov 2021)

Sky Radiometer at Gadanki & Objectives of this Study

Figure : Location of Gadanki with Climate Observatory tower and Sky Radiometer

Data Period: April 2008 - November 2018

- Size-resolved approach based on a fixed particle size threshold
- Examine the climatological aspects of size resolved column aerosol optical properties
- Evaluate the size-resolved AOD with those retrieved using the extended spectral deconvolution algorithm (SDA+)

Methodology - Retrieve Column Aerosol Optical Properties

- Flow chart illustrating
- the main processing steps, and
- extended step for deconvolution.
- ► SKYRAD package (SKYRAD.PACK, version 5.0) → 400, 500, 675, 870 and 1020 nm
 - Aerosol Optical Depth (AOD)
 - Single Scattering Albedo (SSA)
 - normalized phase function
 - Asymmetry parameter (ASY)
 - Volume size distribution (dV/dlnr)
 - Complex refractive indices

Separation of Fine and Coarse aerosol optical properties

- Aerosol size distribution is mostly bimodal fine (r < 0.6 μ m) and coarse (r > 0.6 μ m)
- ► This convention is followed for AERONET retrievals.

Aerosol Optical Depth (AOD or τ) is related to the columnar aerosol size distribution through the Mie integral equation as below:

$$\tau(\lambda) = \int_{r_a}^{r_b} \pi r^2 Q_{ext}(m, r, \lambda) N(r) dr = \int_{r_a}^{r_b} \frac{3Q_{ext}(m, r, \lambda)}{4r} \frac{dV}{dlnr} dlnr$$

 Q_{ext} is the Mie extinction efficiency,

N(r) is the columnar aerosol number density in the radius range dr centered at r

 r_a and r_b correspond to the lower (0.012 μ m) and upper (16.54 μ m) cut-off radii

Extended Spectral Deconvolution Algorithm (SDA+)

- ► Developed by O'Neill et al. (2003) to separate fine and coarse mode contributions to AOD at reference wavelength (at 500 nm) using spectral AODs ← Spectral Deconvolution Algorithm (SDA).
- ► O'Neill et al. (2008) extended to fine and coarse AOD spectra ← Extended Spectral Deconvolution Algorithm (SDA+)
- Kaku et al. (2014) demonstrated SDA+ accurate prediction of fine and coarse partitioning in global data sets representing a range of aerosol regimes.
- ▶ Both SDA and SDA+ methods ...
 - does not require the assumption of minimum cutoff size between modes.
 - based on spectral AODs alone.

Seasonal variation - Spectral AOD, FMF, AE₄₄₀₋₈₇₀

- Angstrom (1929): $\tau_{\lambda} = \beta \ \lambda^{-\alpha}$
- Distinct spectral variability and seasonal heterogeneity observed

Seasonal variation - Volume size distributions

- Biomodal aerosol size distributions.
- A clear dip between the two modes.

- Fine mode dominated \rightarrow DJF, MAM
- Significant coarse mode \rightarrow JJA
- Fine mode radii for peak values ightarrow
 - 0.17 μm (DJF, SON)
 - ▶ 0.12 µm (JJA)
 - ▶ 0.12–0.18 µm (MAM)
- Correspond to water-soluble component
- Coarse mode radii for peak values ightarrow
 - ▶ 2.4–7.7 µm (JJA)
 - ▶ 7.7–11.3 µm (DJF)
 - 7.7 μm (MAM, SON)
- Mix of insoluble (6.0 μm), sea-salt coarse (7.9 μm), mineral coarse (11.0 μm), and mineral transported (3.0 μm)

Seasonal variation - Air mass history

- **DJF** African region & Arabian peninsula (< 30%); Southern tip of Indo-Gangetic outflow region & West of India (> 50%); BoB and SE Asia ($\sim 20\%$) \Rightarrow localized biomass burning, coated fine-mode aerosols dominate
- MAM Continental air masses from peninsular India (60%); Saharan desert region (\sim 14%), Oceanic region (26%) \Rightarrow biomass-burning aerosols from forest fires & localized burning; coarse-mode aerosols
 - **JJA** *SW* & *Oceanic* (100%) \Rightarrow coarse mineral dust & marine aerosols
 - SON SE & SW Asia, Oceanic region, Indo-Gangetic outflow region & West of India ⇒ coarse-mode sea-salt, marine and anthropogenic = > <=> = → <</p>

Seasonal variation - Spectral SSA, AAOD, ASY

- SSA Increasing trend \rightarrow Pronounced spectral dependence of scattering at shorter wavelengths by fine mode in comparison to the scattering due to coarse mode aerosols.
- AAOD Decreasing trend of total/fine mode with wavelength & almost flat spectral behavior of coarse mode aerosols.
 - $\underset{mode}{\mathsf{ASY}} \ \underline{\mathsf{Decreasing}} \ \mathsf{trend} \ \mathsf{of} \ \mathsf{total}/\mathsf{fine} \ \& \ \mathsf{coarse}$

<u>Weaker rate of decrease</u> in total/fine mode during JJA (indicate dominance of coarse particles causing strong forward scattering)

Monthly & Diurnal variation

- ► Seasonal asymmetry → AOD, AE
- Practically insignificant (< 5%) → FMF, SSA

10/14

Intra-annual variation

- Higher daily mean AOD₅₀₀ (> 1.0) \rightarrow Occur more frequently from May to September.
- Large number of days in any particular year are mostly dominated by fine mode aerosols or emission sources contributing them.

11/14

Comparison between size-resolved AOD and SDA+ retrievals

- ▶ Total AOD highly correlated (> 0.99)
- ► Fine and coarse AODs (r ~ 0.96) with remarkable scatter and deviation from 1:1 line.
- Fine AODs (62%) overestimated w.r.t SDA+ retrievals for bins 0.0 to 0.3 in AOD, thereafter a clear underestimation.
- Coarse AODs exhibit zero difference centered at 0.0 bin (around 36%)
- Coarse AODs systematically decreased to -0.15 at 0.5 in AOD bin.

Conclusions

- Strong seasonal and spectral dependence ⇒ Presence of varied contributions of natural and anthropgenic aerosols in the atmospheric column.
- Spectral behavior of SSA and AAOD ⇒ Increased contribution of organic aerosol (absorption at shorter wavelengths) + highly absorbing coarse particles (in the blue spectral band (~ 440 nm)).
- \blacktriangleright High FMF_{500} > 0.6 and AE_{440-870} \gtrsim 1.0 \Rightarrow Air masses coming from Indian subcontinent
- ▶ Low FMF₅₀₀ < 0.4 and AE₄₄₀₋₈₇₀ < 1.0 \Rightarrow Coarse mode dominance associated with airmasses from the oceanic region.
- ► Intra-annual variability ⇒ Prevalence of distinct fine and coarse mode dominance periods in any particular year.
- ▶ Diurnal variation \Rightarrow Seasonal asymmetry in AOD and AE₄₄₀₋₈₇₀ while practically insignificant variation in FMF and SSA during the day.
- ► Evaluation of fine and coarse AOD₅₀₀ with those from SDA+ method \Rightarrow Differences resulting because of fixed cutoff radius (0.6 μ m), and partly due to the mixed contributions from dominant fine and aloft mineral dust aerosols.

Acknowledgments

- Prof. Teruyuki Nakajima and Prof. Hitoshi Irie are acknowledged for providing the SKYRAD package (version 5.0).
- Dr. Pradeep Khatri is acknowledged for extending his support during the initial analysis with SKYRAD package.
- Prof. Norman T O'Neill, Universit
 è de Sherbrooke is acknowledged for sharing the SDA+ code.

Thank You