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Sky Radiometer at Gadanki & Objectives of this Study

Climate
Observatory Sky Radiometer

Figure : Location of Gadanki with Climate
Observatory tower and Sky Radiometer

Data Period: April 2008 – November 2018

I Size-resolved approach based on a
fixed particle size threshold

I Examine the climatological aspects
of size resolved column aerosol op-
tical properties

I Evaluate the size-resolved AOD
with those retrieved using the ex-
tended spectral deconvolution al-
gorithm (SDA+)
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Methodology - Retrieve Column Aerosol Optical Properties

Solid Disc Scan Data

(Solid view angles)
Direct irradiance & 

Diffuse sky radiance data+

Sky Radiometer Observations
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Mie Code

Deconvolution of aerosol size-resolved 

(fine and coarse) optical properties
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I Flow chart illustrating

- the main processing steps, and

- extended step for deconvolution.
I SKYRAD package (SKYRAD.PACK,

version 5.0) → 400, 500, 675, 870 and
1020 nm

- Aerosol Optical Depth (AOD)
- Single Scattering Albedo (SSA)
- normalized phase function
- Asymmetry parameter (ASY)
- Volume size distribution (dV/dlnr)
- Complex refractive indices
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Separation of Fine and Coarse aerosol optical properties
I Aerosol size distribution is mostly bimodal - fine (r < 0.6 µm) and coarse (r > 0.6 µm)

I This convention is followed for AERONET retrievals.
Aerosol Optical Depth (AOD or τ) is related to the columnar aerosol size distribution through
the Mie integral equation as below:

τ(λ) =

∫ rb

ra

πr 2Qext(m, r , λ)N(r)dr =

∫ rb

ra

3Qext(m, r , λ)

4r
dV
dlnr dlnr

Qext is the Mie extinction efficiency,

N(r) is the columnar aerosol number density in the radius range dr centered at r

ra and rb correspond to the lower (0.012 µm) and upper (16.54 µm) cut-off radii

4/14



Extended Spectral Deconvolution Algorithm (SDA+)
I Developed by O’Neill et al. (2003) to separate fine and coarse mode contributions to AOD

at reference wavelength (at 500 nm) using spectral AODs ← Spectral Deconvolution

Algorithm (SDA).

I O’Neill et al. (2008) extended to fine and coarse AOD spectra ← Extended Spectral

Deconvolution Algorithm (SDA+)

I Kaku et al. (2014) demonstrated SDA+ accurate prediction of fine and coarse partitioning

in global data sets representing a range of aerosol regimes.

I Both SDA and SDA+ methods ...

I does not require the assumption of minimum cutoff size between modes.

I based on spectral AODs alone.
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Seasonal variation - Spectral AOD, FMF, AE440−870
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I Angstrom (1929): τλ = β λ−α

I Distinct spectral variability and seasonal

heterogeneity observed

I Steeper spectral slope of total AOD →

DJF, MAM, SON

I Almost flat spectral behaviour of total

AOD → JJA

I Attributed to changes in the columnar

aerosol size distribution
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Seasonal variation - Volume size distributions
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I Biomodal aerosol size distributions.
I A clear dip between the two modes.

I Fine mode dominated → DJF, MAM
I Significant coarse mode → JJA
I Fine mode radii for peak values →

I 0.17 µm (DJF, SON)
I 0.12 µm (JJA)
I 0.12–0.18 µm (MAM)

I Correspond to water-soluble component
I Coarse mode radii for peak values →

I 2.4–7.7 µm (JJA)
I 7.7–11.3 µm (DJF)
I 7.7 µm (MAM, SON)

I Mix of insoluble (6.0 µm), sea-salt coarse
(7.9 µm), mineral coarse (11.0 µm), and
mineral transported (3.0 µm)
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Seasonal variation - Air mass history

DJF African region & Arabian peninsula (<
30%); Southern tip of Indo-Gangetic
outflow region & West of India (> 50%);
BoB and SE Asia (∼ 20%) ⇒ localized
biomass burning, coated fine-mode
aerosols dominate

MAM Continental air masses from peninsular
India (60%); Saharan desert region
(∼14%), Oceanic region (26%) ⇒
biomass-burning aerosols from forest fires
& localized burning; coarse-mode aerosols

JJA SW & Oceanic (100%) ⇒ coarse mineral
dust & marine aerosols

SON SE & SW Asia, Oceanic region,
Indo-Gangetic outflow region & West of
India ⇒ coarse-mode sea-salt, marine
and anthropogenic 8/14



Seasonal variation - Spectral SSA, AAOD, ASY
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SSA Increasing trend → Pronounced spectral
dependence of scattering at shorter
wavelengths by fine mode in comparison
to the scattering due to coarse mode
aerosols.

AAOD Decreasing trend of total/fine mode with
wavelength & almost flat spectral
behavior of coarse mode aerosols.

ASY Decreasing trend of total/fine & coarse
mode

Weaker rate of decrease in total/fine
mode during JJA (indicate dominance of
coarse particles causing strong forward
scattering)
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Monthly & Diurnal variation
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I Seasonal asymmetry → AOD, AE

I Practically insignificant (< 5%) → FMF,
SSA 10/14



Intra-annual variation
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I Higher daily mean AOD500 (> 1.0) → Occur more frequently from May to September.
I Large number of days in any particular year are mostly dominated by fine mode aerosols or

emission sources contributing them.
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Comparison between size-resolved AOD and SDA+ retrievals
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Figure : Scatter plots and two-sided violin plot

I ∆ AOD = AODSky - AODSDA+

I Total AOD highly correlated (> 0.99)
I Fine and coarse AODs (r ∼ 0.96) with

remarkable scatter and deviation from
1:1 line.

I Fine AODs (62%) overestimated w.r.t
SDA+ retrievals for bins 0.0 to 0.3 in
AOD, thereafter a clear underestimation.

I Coarse AODs exhibit zero difference
centered at 0.0 bin (around 36%)

I Coarse AODs systematically decreased to
-0.15 at 0.5 in AOD bin.
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Conclusions
I Strong seasonal and spectral dependence ⇒ Presence of varied contributions of natural

and anthropgenic aerosols in the atmospheric column.
I Spectral behavior of SSA and AAOD ⇒ Increased contribution of organic aerosol

(absorption at shorter wavelengths) + highly absorbing coarse particles (in the blue
spectral band (∼ 440 nm)).

I High FMF500 > 0.6 and AE440−870 & 1.0 ⇒ Air masses coming from Indian subcontinent
I Low FMF500 < 0.4 and AE440−870 < 1.0 ⇒ Coarse mode dominance associated with

airmasses from the oceanic region.
I Intra-annual variability ⇒ Prevalence of distinct fine and coarse mode dominance periods

in any particular year.
I Diurnal variation ⇒ Seasonal asymmetry in AOD and AE440−870 while

practically insignificant variation in FMF and SSA during the day.
I Evaluation of fine and coarse AOD500 with those from SDA+ method ⇒ Differences

resulting because of fixed cutoff radius (0.6 µm), and partly due to the mixed
contributions from dominant fine and aloft mineral dust aerosols.
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